Sphingolipids are potential heat stress signals in Saccharomyces.
نویسندگان
چکیده
The ability of organisms to quickly respond to stresses requires the activation of many intracellular signal transduction pathways. The sphingolipid intermediate ceramide is thought to be particularly important for activating and coordinating signaling pathways during mammalian stress responses. Here we present the first evidence that ceramide and other sphingolipid intermediates are signaling molecules in the Saccharomyces cerevisiae heat stress response. Our data show a 2-3-fold transient increase in the concentration of C18-dihydrosphingosine and C18-phytosphingosine, more than a 100-fold transient increase in C20-dihydrosphingosine and C20-phytosphingosine, and a more stable 2-fold increase in ceramide containing C18-phytosphingosine and a 5-fold increase in ceramide containing C20-phytosphingosine following heat stress. Treatment of cells with dihydrosphingosine activates transcription of the TPS2 gene encoding a subunit of trehalose synthase and causes trehalose, a known thermoprotectant, to accumulate. Dihydrosphingosine induces expression of a STRE-LacZ reporter gene, showing that the global stress response element, STRE, found in many yeast promoter sequences can be activated by sphingolipid signals. The TPS2 promoter contains four STREs that may mediate dihydrosphingosine responsiveness. Using genetic and other approaches it should be possible to identify sphingolipid signaling pathways in S. cerevisiae and quantify the importance of each during heat stress.
منابع مشابه
Sphingolipid signaling in yeast: potential implications for understanding disease.
Sphingolipids are essential components of membranes and important for cellular integrity. The main focus of research in the past years has been to demonstrate their role as second messengers. The yeast Saccharomyces cerevisiae is an excellent model for the study of sphingolipids, because the first steps of this metabolic pathway are highly conserved among fungal, plant and the animal kingdoms. ...
متن کاملAcute activation of de novo sphingolipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins.
Recent studies are beginning to implicate sphingolipids in the heat stress response. In the yeast Saccharomyces cerevisiae, heat stress has been shown to activate de novo biosynthesis of sphingolipids, whereas in mammalian cells the sphingolipid ceramide has been implicated in the heat shock responses. In the current study, we found an increase in the ceramide mass of Molt-4 cells in response t...
متن کاملCoordination of Rapid Sphingolipid Responses to Heat Stress in Yeast
The regulatory roles of sphingolipids in diverse cell functions have been characterized extensively. However, the dynamics and interactions among the different sphingolipid species are difficult to assess, because de novo biosynthesis, metabolic inter-conversions, and the retrieval of sphingolipids from membranes form a complex, highly regulated pathway system. Here we analyze the heat stress r...
متن کاملRoles for sphingolipid biosynthesis in mediation of specific programs of the heat stress response determined through gene expression profiling.
Previous studies have demonstrated roles for de novo production of sphingolipids in Saccharomyces cerevisiae in the regulation of the transient cell cycle arrest and nutrient permease degradation associated with the heat stress response, suggesting multiple functions for yeast sphingolipids in this response. We, therefore, sought to determine the generalized involvement of sphingolipids in the ...
متن کاملCanonical Modeling of the Multi-Scale Regulation of the Heat Stress Response in Yeast
Heat is one of the most fundamental and ancient environmental stresses, and response mechanisms are found in prokaryotes and shared among most eukaryotes. In the budding yeast Saccharomyces cerevisiae, the heat stress response involves coordinated changes at all biological levels, from gene expression to protein and metabolite abundances, and to temporary adjustments in physiology. Due to its i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 272 48 شماره
صفحات -
تاریخ انتشار 1997